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SIMPLIFIED CALCULATION OF TRANSITION MATRICES
FOR OPTIMAL NAVIGATION

By John S. White
Ames Research Center

SUMMARY

This paper presents the results of a study aimed at simplifying the
equations used when applying the Kalman filter to space navigation. One fre-
quently used method for generating the transition matrix is to integrate the
perturbation equations of motion. An alternate approach considered here gen-
erates approximate matrices directly from the gravitational potential. With
this scheme, the transition matrices can be generated much more quickly and
with smaller computer storage requirements than before. Using these approxi-
mate matrices for navigation is equally as good a technique as the original.

INTRODUCTION

In previous studies concerned with space navigation (refs. 1-6) the use of
an optimal filter for processing the data has been considered. These studies
have shown that such a filter permits accurate extraterrestrial navigation.
Since the computations required are fairly complex, it would be desirable to
see what simplifications could be made without too much loss of accuracy.

In this study we will consider the possibility of using simpler (and pos-
sibly less accurate) methods for computing the transition matrix. 7This matrix
is used in space navigation calculations to relate deviations of the trajectory
at one time to those at another. Thus,

x(t) = o(t;t0)x(t,)

where ©(t;t,) is the transition matrix from t, to t, and x(t,) and x(t)
represent the state at two different times.

In the previous work the transition matrix has been obtained by integrat-
ing the perturbation equations of motion (ref. 1, appendixes B and E). This
approach utilizes a reference trajectory (obtained by integration of the true
nonlinear equations of motion) to compute the coefficients of the perturbation
equations and gives a transition matrix whose accuracy is limited only by the
accuracy of integration. The computational procedure, however, is quite
complex.

Two possible means of simplifying this computation will be considered
here. First, one can approximate the transition matrix by a power series in
the two variables t and tp, and then use this series to compute the ¢ matrix;
second, one can derive a simplified expression for the matrix which is a



function of the partials of the gravitational field and the time increment.
For both cases the necessary equations will be derived and results presented
and compared with the results obtained by using the true matrices, obtained by
integrating the perturbation equation.

ANATYSIS

In the previous studies (refs. 1-3) the transition matrix has been
obtained by integration of the perturbation equations of motion. The differ-
ential equation governing the motions of the state variable x (composed of
three position and three velocity components) is

x(t) = F*(t)x(t) (1)
The F¥ matrix can be partitioned into 3X3 submatrices, as

o I
F* = c (2)

where F 1is the gradient of the gravitational attraction.

One of the properties of the transition matrix is that it satisfies the
same differential equation as does x. Thus,

d(t;to) = F*(t)o(t;to); P(tosto) = I (3)

where double arguments are used to indicate the finishing and starting time.
The solution of this expression can be expressed as a two-dimensional Taylor
series in t, and 8%, where ot =t - t5 with the origin for +t and t,
assumed to be at the start of the trajectory. We then have for each element
of the transition matrix

_ N to' ot

The Cij are a set of appropriate coefficients that can be determined by
a two-dimensional curve fitting process. That is, one can evaluate ¢h,m(t5to)
along some specific reference trajectory by integrating the perturbation equa-
tions and then evaluate a set of C4ij that will cause the series to converge
to the previously determined value of P ,m This process must be repeated for
all elements of the matrix o.

This approach has two drawbacks. First, the shape of the ¢ surface is
highly irregular as t, approaches the time of periapse. This is demonstrated
in figures 1l(a) and (b?, which are plots of two typical elements of ¢. These
are plotted for a constant time increment, &t, and varying starting time, to.
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In contrast, plots of these elements versus ot for fixed +t, (not shown) are
quite smooth. Thus, for a good fit, the series must contain high powers of

t, @and therefore a large number of terms. Fitting the surface for only the
midrange values of 15 one would require many fewer terms. Then, however,
some other technique would be needed to obtain transition matrices at the end
points of t5. The other difficulty is that the Cij are evaluated along a
specific reference trajectory and would have to be re-evaluated for different
trajectories.

Development of F Series

An alternate approach is to expand the solution of equation (3) in a one-
dimensional Taylor series in ©t, giving

2
o(t;to) = ®(tosto) + (to;to)dt + P(to; to) %;r LI (5)

Egquations for the derivatives of ¢ can be obtained appropriately differen-
tiating equation (3) and evaluating the results at t = t,. The derivatives
of ¢ are

M(to;to) = I

Ptosto) = F¥(ts)

P(tosto) = F* + Fxpx* P 6)
D(tosty) = F* + 20%Fx 4+ Fxpx + F¥°

etc.

If the partitioned form of F¥ from equation (2) is substituted into
equation (6) and these, in turn, are substituted into equation (5), the follow-
ing expression for ¢ results

0 I F(to) 0 2

o(t;to) = I + 5t + | CL
F(t,) O P(t,)  Flog)| 2

. F(to) F(t,) é%i .

B(t,) + F(,)°  2(t,) | 3

NACE (7)
o, O



where

_ 5t2 | - 513
¢, = I + F(to) T + F(t,) T
3
g = ot + Fto) T+ . L.
= F(t,)ob + F(ty) Do + [F(tg) + F(tg)2] S8
% = Flto)ot + Flto) - + [F{te) + F(to)7] =5
_ 5t2 . 563
o, = I + F(to) ! + 2F(tg) T

where again &t = t - t,.

In this equation, F may be as complex or as simple as desired, that is,
F may include only two-body effects, or may include additional terms due to
oblateness and other bodies of the solar system. Also it is apparent that one
may include more or fewer terms in the series evaluation. For simplicity, it
would be desirable to use only the terms involving F, dropping terms involving
powers and derivatives of F. This gives an estimate of the transition matrix

as

512 5t3
I+ F(to) > I3t + F(t,) T;?
(t)'to) = 6t2 (8)

)
est
F(t,)0t I+ F(t,) =7

Since F is a function of position in orbit, this equation can be
evaluated easily for any trajectory and any time along the trajectory. Thus,
no reference trajectory is required. Further, it is relatively simple, as
discussed in the next section, to determine how big ©dt can be allowed to get.

Development of Maximum Allowable Time Interval

In using equation (8) there is some maximum value of &t, beyond which
the neglected terms in the series become important. This value of 0t can be
determined by equating the first term dropped with the last term kept. Since
the terms all involve matrices, it seems reasonable to use the norm of the
matrix in the equation. This leads to the following four equations.



(el 25 = 150l 2

|

17l &5 = [l2f(so)]| 25

31! b1
7o)l = [I#Ce,)] S5

&t=2 . 5t3
lF(e) |l o 2f[F ()l ET

If these equations are solved for ©&t, one finds that the smallest ©ot
is obtained from the last equation, and this value of &t is used to determine
a Obpay+ That is, we wish to find a Otpgy, such that

[FCE = 5 11F(t0) |8t (9)

and then in evaluating equation (8), we will choose 8t < kbt ., where k is
less than uwnity.

Let us define

7| = max | £,

1,J
as being a reasonable norm to use in evaluating equation (9), and further, let
us restrict F to the two-body case. We then have (ref. 6, eq. (6.51))

—=T
__ (73
F=-3 <I r—2> (10)

r

where p is the constant of gravitational attraction; #L = (ri,rs,rs) is the
position vector of the vehicle with respect to the gravitational center; and
r = ‘f[.

In order to determine HFH, we must choose that r which will maximize
the element of F being considered. There are really only two types of terms
to consider - diagonal and off diagonal. A typical diagonal term is
F11 = -(p/r®)[1 - (3r22/r2)] which can be maximized if ri = r giving

f1155| = 20/r°. A typical off diagonal term is

o, 38T
2 r3 r2




which is a maximum when ri = ra = rAl2, giving f12max| = (3/2)(1/r3). Thus,
choosing the larger of these two values, we have

Ief = 2 & )

Having determined ||F|| for use in equation (9), we will now consider ||F|.
Differentiating equation (10) gives

. T T _T -
= Y3 |TT L VE TV (g _ 5 IF (12)
rr3 |rv rv rv r2
where
T d_T
¥ o= (va,va,va) = a%— and v = |¥|

The evaluvation of HFH is slightly more complicated since both r and v must
be considered, along with their scalar product. To simplify the evaluation of
HFH, only values of FLv/rv = O, *1 were considered, and it was assumed that
for other values of the product the maximum element would be nearly the same.
Using the same general method as before, we get

I =6 ¥ & (13)

Substituting equations (13) and (11) into (9) and solving for Ot e gives

Stpy = % (14)

Thus, if ot = r/2v, the size of the terms neglected in equation (8) (those
involving F) are comparable with those retained (involving F). It is
expected then that Ot will be chosen such that ot < kdtp,, with k being
1.0 or less.

A check was also made on the size of the second neglected term (not given
in these equations), and it was fouqd that for ot = atmax this term at
perigee is slightly less than the F term and becomes relatively smaller as
the distance to the central body increases. Also, since it involves an addi-
tional power of ©®t, it decreases rapidly as Ot is reduced from Ot -

In many cases, the desired &t (say from one observation to another or
from the beginning to the first observation) is larger than kdt , and. thus
two or more transition matrices must be combined to give the desired overall
transition matrix. For example, suppose we desire the matrix o¢(ti3tg)-
However, kStpax(ty) = 8ty < t1 - t,. We can readily generate @(tg;t,), where
tg, = to + dtg, from equation (8). Then consider the time interval from tg to
t1. Assuming that now kbt g.(tz) > t1 - tg, We can obtain ¢(tit,), and by
multiplying we get

6



P(tste) = o(tasty)oltys o) (15)

Of course, this process may be repeated as many times as required to obtain the
desired overall matrix.

Effect of Two-Body Assumption

The previous evaluation of F involved only two-body terms. One should
also consider additional effects, specifically, earth oblateness and the per-
turbing forces of the sun and moon, and should determine the importance of such
effects relative to the neglected terms in the power series expansion of F.
Including these effects gives

" = = - - -
F = - e8 T - 3rereé> B FLm3 I-3 rm?yé) _ Hss <# ~ 3 I's?f’sT>
re re2 Ty e rg rg®

_He Jaz[(l + 2M) < _ 2£§£§3>
re5 re2

_ T _ _ - - T _ _
Mr 2r.T Trer T
_ 5(Ze e 1+ eTe ete Tele :ﬂ (16)
Te e r.= re2
where
0 0 0
M=1{0 0 O (17)
0 0 1

It should be noted that this is the matrix form of the perturbation equations,
which can be obtained by partial differentiation of the equations in appendix A
of reference 1. We will consider the norms of each of the terms in (16)
individually and consider their relative effects. The first three terms have
the same form, and the form of the norm has been already given in equation (11).
Thus,

IFell = 2 teg
Irgl] = 2 25
gl = 2 “—



The last term of equation (16) reaches its maximum if ¥ is all in the =z
direction with the (3,3) term being the largest. This gives approximately

K B
HFJH = & Ja2[3(-4) - 51 +2 - 7)] = 8 —& Ja®

re> 5

e e
These four components of HFH are evaluated at four points along the earth-moon
line to get representative values. The points used are at the earth's surface,
at 66,000 km from the earth, 66,000 km from the moon (the sphere of influence),
and at the moon's surface. The distance from the sun was assumed constant at
1 a.u., and the earth-moon distance was assumed to be 380,000 km.

The results are tabulated in table I. As expected, in the vicinity of the
earth the HFeH dominates, while in the vicinity of the moon the HFmH dominates.
Thus, if only a single two-body term is to be used for F, it must be switched
between Fg and Fy in the vicinity of the sphere of influence, or alterna-
tively, both terms can be used at all times. The importance of these various
terms will be discussed in the results section where, having determined a
value for k, we will be able to estimate the approximate size of the higher
order terms of the series that have been rejected.

DESCRIPTION OF SIMULATION

In order to consider the effects of using approximate transition matrices,
a digital computer program was developed. This program is a modification of
the one used by McLean (ref. 2). The principal modifications were made to the
navigation system equations. These equations are discussed in the following
subsection, and are followed by a description of the trajectory used in the
simulation. Other factors in the simulation are as used by McLean (ref. 2) and
also by Smith (ref. 7).

Navigation System Eguations

When an approximate transition matrix is used in connection with the
equations for the optimal filter, the overall system becomes suboptimal. As a
result, the error covariance matrix obtained is only an approximation and is
not a proper measure of the true estimation error. A true measure - that is,
a true covariance matrix of estimation error - requires additional equations.
The optimal filter equations have been developed previously (refs. 1 and 2),%
as well as the equations giving the statistics of suboptimal filters (ref. 7).
The necessary equations will be repeated here for convenience. It is assumed
that observations are uncorrelated from one time to the next.

IObviously, the Kalman filter technique as applied to the navigation prob-
lem is not optimal, strictly speaking, since the theory assumes a linear system
and the navigation system equations are only approximately linear. However,
for the purposes of this report it is assumed that the linear approximation is
exact and the covariance matrix of estimation error computed by means of the
Kalman filter equation is, therefore, a true measure of system performance.

8



Consider first the true covariance matrix of estimation errors. This
matrix can be updated from the time of one observation to the time of the next
by

P (tyepg) = Pbicpns b1 P () T (bpgpns bic) (18)

where the - and + superscripts refer to before and after an observation,
respectively; P*(t,) is given as an initial condition; and ©(tyxi,;tx) is
obtained by integrating the perturbation equations of motion.

The estimated state X is also integrated from tg to tgyp- At the time
of an observation the estimated trajectory is updated using an estimated
welghting matrix as

%Y = & + Koo (y - HX ) (19)

Here 1y represents the observation and H is the matrix of partial differen-
tilals relating deviations in the trajectory to deviations in the observation.
Thus HX  represents the expected value of the observation based on previous
data; Koqy 1is a welghting matrix which is expected to be an estimate of the
optimum weighting matrix.

As a result of this observation, the true covariance matrix P 1is updated
as

_ T
PT = (I - KestH)P (I - KegtH)™ + KestQKgst (20)

This equation is valid for a nonoptimal system (see ref. 7, eq. (72)) and gives
the covariance matrix associated with the state estimation obtained in equa-
tion (19) for any K gy -

Equations (18) and (20) could not be used in an actual system that used
approximate transition matrices, since the true transition matrices would not
be available. For the purpose of this study, however, these equations were
used. to define the true state of affairs.

The actual system will use the equations for a true optimal system, but
will use an estimate of the transition matrix, @est(tK+l3tK) computed by means
of the F-series (or any other desired method). These equations will then pro-
duce only an estimate of the covariance matrix and weighting matrix.

The procedure starts by updating the estimated covariance matrix Pegt
by means of equation (18), but using Pegt 2nd Pegt, where PE (o) = P+?to).
The estimated state %X is updated to the appropriate time by integration and
equation (19) is used exactly as given to determine the new estimate. The
weighting matrix required in equation (19) to update the estimated trajectory
is given as

- — -1
Kegt = PagtH  (HPoiHT + Q) (21)



+ . .
and Pest is given as

+

est = Pest ~ KestTPest (22)

P

If the true covariance matrix P is used in equation (21), the resulting
K will be optimum. If this optimum K,gt 1is then substituted into equa-
tion (20), this equation will then simplify and have the same form as
equation (22).

In order to get an indication of the nonoptimality caused by the use of
the approximate transition matrix, the true matrix, P, is compared with the
estimated matrix, Pgg- To make this comparison, the quantities P and Py
will be determined. These are defined as follows: The covariance matrix is
partitioned into four 3 X 3 submatrices. The square root of the trace of the
upper left submatrix is P, and that of the lower right is Py. Thus, Pn
represents the rms position deviation of the estimated trajectory with respect
to the actual trajectory while Py, represents the corresponding velocity
deviations. Similar quantities from Pegy, that is, Proo and Py g, are also
determined.

Tra jectory

Tn order to test the navigation accuracy using an approximate calculation
of the transition matrix, a sample circumlunar mission was chosen for a refer-
ence. The particular reference trajectory chosen has a 70.68 hour flight time
to the moon with a perilune altitude of 187 km. It has a free return to the
earth arriving at perigee at 144.87 hours after launch and entering the earth's
atmosphere near the center of the entry corridor. The navigational observa-
tions used were theodolite measurements, which determine the right ascension
and declination of the earth or moon as seen from the vehicle. Appropriately
chosen sextant data would give essentially the same results. There were
45 observations made on the outbound leg of the mission and 39 on the return
leg. The observations were grouped in a manner very similar to that shown in
figure 2 of reference 7; that is, observations of the earth were grouped
together, as were those of the moon, and some of both types were made shortly
before each of the three expected velocity corrections on each leg.

RESULTS AND DISCUSSION

The purpose of this section is to discuss the operation of the navigation
system using approximate transition matrices and to consider the effects of
the various simplifications. First of all, we will discuss the accuracy of the
F-series transition matrices. Then we will consider the step size required for
use with the F-series expansions, and will compare the resultant covariance
matrices with those obtained using the exact transition matrix in a truly
optimum system. The effect of gravitational perturbations is then considered
followed by a brief discussion of computer storage and time requirements.
Finally, the effect on guidance will be considered.
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Transition Matrices

In the computer program the true transition matrix, calculated by
integrating the perturbation equations, was available, as well as the F-series
approximation. These two matrices were compared (using the norms of the sub-
matrices), and the percentage difference between the estimate and the true
transition matrix varied from 1 to 0.1l percent for long intervals where many
transition matrices must be multiplied together and from O.1 to 0.001 percent
for short intervals where a single matrix can be used. McGee (ref. 8) states
that adequate navigation can be performed if the transition matrices for short
intervals are calculated using only 16 bits or 0.003 percent error. The
F-series transition matrix has about this error for the short intervals and
thus one would expect that it would provide adequate navigation, as indeed it
does.

Effect of Step Size

In order to determine the effect of using various time intervals in calcu-
lating the transition matrix from the F-series, a comparison was made between
Pogt» the approximate covariance matrix of errors in the estimated trajectory,
and P, the true covariance matrix. The F-series itself was calculated omit-
ting the sun and oblateness terms, but including at all times both the earth and
moon terms to provide a smooth transition from earth-centered to moon-centered
conics.

A study of P, and Py from both the true and estimated covariance matri-
ces will then show the adequacy of the transition matrix approximation. A
plot of Prest/Pf and PVest/PV for both outbound and return legs of the cir-

cumlunar trajectory is shown in figure 2 for four different values of K.
Values of P and P.qr Wwere available only after an observation. The gaps in

the curves represent periods of no observations. Ideally, of course, these
ratios should be constant at unity.

It can be seen in figures 2(a) and (b) that, at least until perilune, a
value of k = 0.1 gives quite good results and that the accuracy falls off as
k increases, so that at k = 1.0 the results are poor. After perilune, how-
ever, all of these curves deviate from unity, and data not shown indicate that
this trend continues so that at perigee the ratio is quite far from unity.
However, if the run is restarted at perilune with P = Pggt = nominal values,
then as shown in figures 2(c) and (d), the results are very similar to those
of the outbound leg, with k = 0.1 quite good and k = 1.0 fairly poor.

It is apparent, however, that smaller values of k are required for
adequate results after passing perilune. If the F-series is calculated at
every integration step, which implies that k is small, the ratio of Pest/P
remains close to 1.0 for the complete round trip. Thus, these smaller values
of k in the vicinity of the moon allow a successful perilune passage. How-
ever, this gives a considerable increase in the amount of computation. If the
vehicle is returning from a lunar orbit, it would be natural to restart the
Pogt matrix at its nominal value so that extremely small values of k would

11



not be required. In a fly-by mode, however, this would not be natural.
Nevertheless, at perilune a nominal P matrix could be inserted in the com-
puter, which would allow successful computations during the return flight.

These results indicate that the assumptions made in determining &tp,y
(eq. (14)) are reasonable, and that a value of k = 0.25 gives reasonably
accurate results. This value is used as a standard in the remainder of the

discussion.

Using this value of k, one must multiply several short transition matri-
ces together to cover some of the larger required intervals. ZFor instance,
30 short term matrices were required to generate the first matrix from t = O
to 2.5 hours, and 15 were required during the last 48 hours to perilune. Most
of the time a single matrix was adequate to cover the time interval between

observations.

Comparison With Optimum System

It is of interest to compare the results of using the approximate transi-
tion matrices with the results of using the true matrices in a truly optimum
system. This comparison is made in figures 3 and k., In figure 3, the true
transition matrices and the optimal K matrices were used throughout. Thus
Poegt @and P are equal and optimum. The curves represent P and Py, and the
points represent the navigation error of the estimated trajectory for a single
typical flight. The navigation error is supposed to be a typical member of
the ensemble for which P is the rms value. It can be seen that the points
could easily represent a typical member.

In figure 4 the estimated transition matrix was used, and Prest and PVest
are plotted along with the associated navigation error. The curves in fig-
ures 3 and 4 are similar with only small differences, indicating that Pegt
is a good measure of the optimum P. The navigation error points are also
similar. This is to be expected since identical sequences of simulated obser-
vation errors were used in each case, and the covariance matrices are also

similar.

Effect of Two-Body Calculations

In the previous results, both the moon and earth gravitation terms were
used at all times to compute the F-series. It might be simpler to use only
one of these terms and to switch terms at the sphere of influence. These two
techniques are compared for k = 0.25 in figure 5. The plots of Pest/P for
the two cases are essentially identical from launch to the sphere of influence
of the moon. Following this, there is some difference, especially in fig-
ure 5(b), which tends to decrease with time. This same effect is also notice-
able during the return trajectory. In general, either technique will work
adequately, but the three-body technique gives slightly better results.

12



Effect of Oblateness and Solar Gravitation

It is also of interest to ascertain the solar and oblateness effects. In
table I the size of these terms is given along with those of the earth and
moon. The sun's effect is always less than that of either the earth or the
moon, and so will have considerably less influence than that shown in figure 5
for the difference between two- and three-body calculations. The oblateness
term is largest at perigee, at this point, for k = 0.25, the second term in the
series, which is being neglected, is about 0.6(10)*, or about 40 times larger
than the oblateness term. Since the relative size of the oblateness term
decreases rapidly on leaving perigee, it is apparent that it will have less
effect than truncating the series. 1In conclusion, it appears that the solar
gravitation and earth's oblateness will have very little effect on the overall
results.

Computer Storage and Time Comparison

Since the F-series calculation of the transition matrix appears to give
reasonable results, it is of interest to determine the computer storage and
computational time requirements for comparison with the corresponding require-
ments of the technique where the perturbation equations are directly integrated.
Computer programs are available for both techniques, and a limited amount of
data is available concerning storage and timing. However, both programs are
written in Fortran IV, and no optimization of either has been attempted. Thus,
the storage and time requirements given here must be considered approximate.
For each of these two programs the storage specifically required for the cal-
culation of the transition matrix and the time required for performing these
calculations during the outbound leg of the mission were determined and are
presented in the following table:

Storage, words Time, min
F-series 600 (k = 0.1) 1/4
(k = 0.25) 1/5
Perturbation integration 1400 3/4

It can be seen that the F-series takes somewhat less than half the
storage required for the perturbation integration technique. The time required
to integrate the perturbation equation is constant at about 3/4 of a minute;
whereas the time required for the F-series calculations is a function of k.
In the extreme where the F-series is evaluvated at every integration step, the
time required is about 3/t minute. Thus, the F-series approach results in
savings in both storage and time.

Effect on Vehicle Guidance
It has been shown that an approximate transition matrix can be used
satisfactorily for navigation in cislunar space, that is, for determining the

vehicle's present position and velocity. Once the navigation is completed, the
results are used in one of several available guidance procedures to determine
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what, if any, corrective maneuver is required so that the vehicle will
satisfactorily complete the mission. Using the transition matrix for guidance
as well as navigation has been studied in previous research (refs. 2, 6). 1In
those studies it was assumed that the vehicle would be required to arrive at a
desired specified point at a particular time. The transition matrix, from the
present to the end point, was obtained (ref. 2) by multiplying many short
individual matrices together. This guidance scheme was used in the present
study in two ways: First, the approximate transition matrices were used for
navigation only, and the true transition matrices were used in the guidance
scheme. In this case, the standard deviation of the miss at arrival was about
the same as previously reported, namely, about 2 km in altitude and 20 km in
range. This indicates that the approximate transition matrix provides adequate
navigation. Second, it was desired to see the effect of using the approximate
transition matrices in the guidance section also. In a study of word length
requirements (ref. 8), it was concluded that this guidance scheme would be
usable with only 16-bit accuracy in the computation of the transition matrices.
The approximate matrices used here have about 16-bit accuracy for the majority
of the time, but at the beginning and at the end, the accuracy decreases to
about 6 bits. When these approximate transition matrices were used in the
guidance scheme, the standard deviation of the altitude miss was about 1000 km,
indicating that these transition matrices are unsatisfactory for this purpose.

Thus, one can conclude that these approximate transition matrices are
quite satisfactory for use in navigation, but that a guidance scheme should be
selected which does not use them.

CONCLUSIONS

This report shows that a simplified technique for computing the transition
matrices is available which provides adequate navigation in cislunar space and
which uses less computer storage and less computation time. These transition
matrices are computed as a function of the gravitational attraction along the
estimated trajectory and so do not require a reference trajectory.

The gravitational attraction can be computed using the standard two-body
equations. The effect of the earth's oblateness and the sun can be neglected.
In going to the moon, the moon's attraction can either be included all the
time, or the gravitational center can be switched at the lunar sphere of
influence.

The maximum time over which a single calculation of the gravitational
attraction can be used to generate the transition matrices is easily calculated.
Where a longer time interval is required, several individual transition
matrices can be computed and then multiplied together to obtain the overall
desired matrix.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Feb. 28, 1966
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APPENDIX
DEFINITION OF SYMBOLS

equatorial radius of the earth
coefficient of the ijth term of a two-dimensional power series
gradient of the gravitational attraction vector

0 %] , the mtrix of coefficients in the differential equation of

F 0
motion of the state vector

norm of the F matrix
the 1ij element of the F matrix

matrix of partial derivatives of the observed quantity with respect to
the state variables

identity matrix of suitable dimension

coefficient of the second harmonic of the earth potential
optimal weighting matrix

constant used in determining allowable step sizes

null matrix of suitable dimension

covariance matrix of estimation errors

rms position deviation of the estimated trajectory with respect to the
actual trajectory

rms velocity deviation of the estimated trajectory with respect to the
actual trajectory

covariance matrix of observation errors
7|

T i .
(ri,ra,rs)”, position vector of the vehicle
time

T
(vi,va,va) , velocity vector of the vehicle

5



X state vector representing position and velocity deviations from the

reference
% state vector of estimated deviation from the reference
ot time difference over which the transition matrix is used
Stpax maximum allowable value for ©OF
KL constant of gravitational attraction
¢ transition matrix relating deviations at one time with those at
another
PysP55
Dy P, submatrices of @
Notational Conventilons
(") time derivative of ( )
( )T transpose of matrix ( )
()t inverse of matrix ( )
Subscripts
e earth
est estimated
1,7,k indices
J earth oblateness
m moon
0 initial condition
s sun
Superscripts
- value before an observation
+ value after an observation

16
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TABLE I.- THE NORM

OF THE COMPONENTS OF F VERSUS LOCATION
IN CISLUNAR SPACE

Vehicle location ||Fe]] ||| IIFs]|
Perigee 2.44(10)% | 1.41(10)™® | 6.21(10)"%
66,000 km from earth 2.20 2.36(10)"3 | 6.21(10)7%
Lunar sphere of influence .193 .270 6.21(10)%
Perilune 115 1.49(10)* 6.21(10)™=

18




1.004 -+ * A

1.003 H

1.002 [

1.001

1.OOO

(1 + 1.2, 1))

999 —

.998 —

.997 —

Perilune &

.99 | | | | | |

(a) Typical diagonal element.
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“The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of buman knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the resulls thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

TECHNICAL REPRINTS; Information derived from INASA activities
and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to
NASA activities but not necessarily reporting the results of individual
NASA-programmed scientific efforts. Publications include conference
proceedings, monographs, data compilations, handbooks, sourcebooks,
and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546



